
10

Accessing the functions provided in
the MAXQ utility ROM
Using lookup tables within the application code is a common programming practice when
working with microcontrollers. Because of the single-cycle nature of the MAXQ core,
application software cannot read directly from code space and, therefore, cannot directly access
any tables defined within the application code. To alleviate this issue, all MAXQ utility ROMs
include routines for accessing data and tables stored in the program space. In addition to these
core functions, the ROM for each MAXQ variation may have routines specific to that part.
Because these functions might be located anywhere within the ROM, and could move with each
revision of a ROM, a standard technique was developed for accessing the routines. This allows
code written for one version of the ROM to be reused with all subsequent revisions without
needing to rewrite or recompile the code.

For all variants of the MAXQ processor, the utility ROM has a table with addresses for each of
its supported functions. The location of this table can vary from part to part, so a pointer to this
table is always stored at address 800Dh. The addresses for the supported functions can then be
found by indexing into the table. This table always maintains the same order for the functions
throughout all revisions of a particular ROM. Table 1 lists the MAXQ2000 functions and their
entry point within the table.

Executing a utility ROM function requires four steps. Firstly, retrieve the location of the function
table from address 800Dh. Secondly, add the offset for the desired function. Thirdly, retrieve the
address of the utility function by reading from the computed location. Finally, execute the
function by performing a call to the location found in the table. The following MAXQ assembly
function demonstrates these four steps, using the moveDP1inc function of the MAXQ2000 as
an example.

FUNCTION
NUMBER

FUNCTION
NAME

ENTRY POINT
(USERTABLE = ROM[800Dh])

0 Reserved ROM[userTable + 0]
1 Reserved ROM[userTable + 1]
2 Reserved ROM[userTable + 2]
3 moveDP0 ROM[userTable + 3]
4 moveDP0inc ROM[userTable + 4]
5 moveDP0dec ROM[userTable + 5]
6 moveDP1 ROM[userTable + 6]
7 moveDP1inc ROM[userTable + 7]
8 moveDP1dec ROM[userTable + 8]
9 moveFP ROM[userTable + 9]
10 moveFPinc ROM[userTable + 10]
11 moveFPdec ROM[userTable + 11]
12 copyBuffer ROM[userTable + 12]

Table 1. MAXQ2000 Utility ROM User-Function Table

All MAXQ utility ROMs
include routines for
accessing data and
tables stored in the
program space.

11

;;;

;; Function: ReadDataAtDP1

;; Description: This function uses the utility ROM function “moveDP1inc”

;; to read from program memory the data stored at the

;; address in DP[1]. If DP[1] is in word mode two

;; bytes will be read. If DP[1] is in byte mode only

;; one byte is read. DP[1] is then post incremented.

;; Returns: The result is returned in GR.

;; Destroys: ACC and DP[0]

;; Notes: This function assumes that DP[0] is set to word

;; mode and the device has 16-bit accumulators.

;;;

ReadDataAtDP1:

move DP[0], #0800Dh ; This is where the address of the table is stored.

move ACC, @DP[0] ; Get the location of the function table.

add #7 ; Add the index to the moveDP1inc function.

move DP[0], ACC ; Point to where the address of moveDP1 is stored.

move ACC, @DP[0] ; Retrieve the address of the function.

call ACC ; Execute the function.

ret

Because future ROM versions of a particular MAXQ variant might place the utility functions
in a different location, using a routine similar to the ReadDataAtDP1 function guarantees
forward compatibility. The “cost” of this compatibility is larger code size and longer execution
times. In some cases, these tradeoffs might be unacceptable, making it worthwhile to call the
utility ROM functions directly. To call a utility function directly, simply determine the location
of the desired function and use this location as the destination of a call.

Reading a string defined in code space illustrates a common situation requiring the use of
utility functions. A programmer might store error strings, informational strings, or even debug
strings that get displayed during execution of an application. The code segment below shows
one way of achieving this using the ReadDataAtDP1 function as previously described.

Text:

DB “Hello World!”,0 ; Define a string in code space.

;;;

;; Function: PrintText

;; Description: Prints the string stored at the “Text” label.

;; Returns: N/A

;; Destroys: ACC, DP[1], DP[0], and GR.

;; Notes: This function assumes that DP[0] is set to word mode,

;; DP[1] is in byte mode, and the device has 16-bit

;; accumulators.

;;;

PrintText:

move DP[1], #Text ; Point to the string to display.

move ACC, DP[1] ; “Text” is a word address and we need a

sla ; byte address, so shift left 1 bit.

or #08000h ; Code space is mapped to 8000h when running

move DP[1], ACC ; from the ROM, so the address must be masked.

PrintText_Loop:

call ReadDataAtDP1 ; Fetch the byte from code space.

move ACC, GR

jump Z, PrintText_Done ; Reached the null terminator.

call PrintChar ; Call a routine to output the char in ACC

jump PrintText_Loop ; Process the next byte.

PrintText_Done:

ret

Having a common way
of accessing utility ROM
routines also allows
developers to write
code that will work
with all variants of a
particular MAXQ
processor.

Conclusion

Utility functions give developers an easy way to read data stored in program memory. Having a
common way of accessing utility ROM routines also allows developers to write code that will
work with all variants of a particular MAXQ processor. Libraries can be constructed once and
then reused, eliminating concern that future ROM versions will not be compatible.

12

